Module 5 Assignment
Complete the following problems in Chapter 3: Section Exercises.
Section 3.1 Exercises (pp. 171-173):
Problems: 7-51 odd
Section 3.2 Exercises (p. 184):
Problems: 9, 11, 13
Section 3.3 Exercises (p. 199-200):
Problems: 27-43 odd
Section 3.1 (p. 171-173):
7. {(-1,3),(0,2),(1,1)}
7.answer=table defines a function
9. {(1,3),(3,5),(3,7),(5,7),(5,9)}
9.answer=table does NOT define a function
11. {(English,A),(Math,B),(Sociology,A),(Chemistry,B)}
11.table defines a function
13. {(2,4),(3,6),(4,8),(5,10)}
13.answer=set defines a funcion
Domain={(2,3,4,5)}
Range={(4,6,8,10)}
15. {(10,-10),(5,-5),(0,0),(5,5),(10,10)}
15.answer=set does NOT define a function
17. {(Ohio,Obama),(Alabama,McCain),(West Virginia,McCain),(California,Obama)}
17.answer=set defines a function
Domain={(Ohio,Alabama,West Virginia,California)}
Range={(Obama,McCain)}
19. Vertical line test proves this to be a function
19.answer=graph IS a function
21. Vertical line test proves this NOT to be a function
21.answer=NOT a function
23. Multiple y-values ≠function
23.answer=NOT a function
25. (A):Students (S)correspond to faculty (F)
(B):Faculty (F)correspond to students (S)
25.answers=without a value for F or S,
there is no way to determine whether
the correspondences indicate a function
27. f(x)=3x-5
(A)f(3)
f(3)=3(3)-5
f(3)=9-5
f(3)=4
(B)f(h)
f(h)=3h-5
(C)f(3)+f(h)
f(3)+f(h)=4+3h-5
f(3)+f(h)=-1+3h
(D)f(3+h)
f(3+h)=3(3+h)-5
f(3+h)=9+3h-5
f(3+h)=4+3h
27.answers=(A):f(3)=4;(B):f(h)=3h-5;
(C):f(3)+f(h)= -1+3h;(D):f(3+h)=4+3h
29. F(w)=-w^2+2w
(A) F(4)=-4^2+2(4)
F(4)=16+8
F(4)=24
(B) F(-4)=-(-4^2 )+2(-4)
F(-4)=-16-8
F(-4)=-24
(C) F(4+a)=-(4+a)^2+2(4+a)
F(4+a)=-16-a^2+8+2a
F(4+a)=-8-a^2+2a
(D) F(2-a)=〖-(2-a)〗^2+2(2-a)
F(2-a)=-4+a^2+4-2a
F(2-a)=a^2-2a
29.answers=(A):F(4)=24;(B):F(-4)=-24;
(C):F(4+a)=-8-a^2+2a;(D):F(2-a)=a^2-2a
31. f(t)=2-3t^2
(A): f(-2)
f(-2)=2-3(-2)^2
f(-2)=2-3(4)
f(-2)=2-12
f(-2)=-10
(B):f(-t)=2-3(-t)^2
f(-t)=2-3(t^2)
(C): -f(t)=-(2-3t^2 )
-f(t)=-2+3t^2
(D): -f(-t)=-(2-3(-t)^2 )
-f(-t)=-2+3t^2
31.answers=(A):f(-2)=-10;(B):f(-t)=2-3〖(t〗^2);
(C): -f(t)=-2+3(〖t)〗^2;(D): -f(-t)=-2+3(t^2)
33. F(u)=u^2-u-1
(A):F(10)=〖10〗^2-10-1
F(10)=100-10-1
f(10)=89
(B):F(u^2 )=u^4-u^3-1
(C):F(5u)=5u^2-5u-1
F(5u)=25u-5u-1
F(5u)=20u-1
(D):5F(u)=5(u^2-u-1)
5F(u)=25u-5u-5
5F(u)=20u-5
33.answers=(A):F(10)=89;(B):F(u^2 )=u^4-u^3-1;
(C):F(5u)=20u-1;(D):5F(u)=20u-5
37. y-x^2=1
y=1+x^2
domain=all real numbers
37.answer=domain=all real numbers or (-∞,∞)
39. 2×3 + y2 = 4
41. x3 – y = 2
43. 2x + |y| = 7
45. 3y + 2|x| 12
In Problems 47, 49, 51 find the domain of the indicated function. Express answers in both interval notation and inequality notation
47. f(x) = 4 – 9x + 3×2
49.
51.
Section 2.3 (P 184)
Problems 9, 11, 13 refer to functions f, g, h, k, p, and q given by the following graphs.
9. For the function f, find:
(A) Domain (B) Range
(C) x intercepts (D) y intercept
(E) Intervals over which f is increasing
(F) Intervals over which f is decreasing
(G) Intervals over which f is constant
(H) Any points of discontinuity
11. Repeat Problem 9 for the function h.
13. Repeat Problem 9 for the function p.
Section 3.3 Exercises (p. 199-200):
Indicate whether each function in Problems 27–43 is even, odd, or neither. (odd only)
27. g(x)=x^3+x
the function is odd
27.answer=the function is odd
29. m(x)=x^4+3x^2
the function is even
29.answer=the function is even
31. F(x)=x^5+1
the function is neither even nor odd
31.answer=the function is neither even nor odd
33. G(x)=x^4+2
the function is even
33.answer=the function is even
35. q(x)=x^2+x-3
function is neither even nor odd
35.answer=the function is neither even nor odd
In Problems 37–43, the graph of the function g is formed by applying the indicated sequence of transformations to the given function f. Find an equation for the function g. Check your work by graphing f and g in a standard viewing window
37.
39.
41.
43.
Reference
Barnett, R. A., Ziegler, M. R., & Byleen, K. E. (2011). College Algebra (9th ed.). NY: McGraw-Hill Companies, Inc